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Abstract

Digital Audio Workstations (DAWs) offer fine control, but mapping high-level1

intent (e.g., “warm the vocals”) to low-level edits breaks creative flow. Existing2

artificial intelligence (AI) music generators are typically one-shot, limiting oppor-3

tunities for iterative development and human contribution. We present DAWZY, an4

open-source assistant that turns natural-language (text/voice/hum) requests into5

reversible actions in REAPER. DAWZY keeps the DAW as the creative hub with a6

minimal GUI and voice-first interface. DAWZY uses LLM-based code generation7

as a novel way to significantly reduce the time users spend familiarizing themselves8

with large interfaces, replacing hundreds of buttons and drop downs with a chat9

box. DAWZY also uses three Model Context Protocol tools for live state queries,10

parameter adjustment, and AI beat generation. It maintains grounding by refreshing11

state before mutation; and ensures safety and reversibility with atomic scripts and12

undo. In evaluations, DAWZY performed reliably on common production tasks and13

was rated positively by users across Usability, Control, Learning, Collaboration,14

and Enjoyment. We show reliability on common production tasks; code and a short15

demo are available. 116

1 Introduction17

Modern music production centers on Digital Audio Workstations (DAWs) Leider [2004], which18

democratize pro-quality creation but burden users with option overload that disrupts flow [Kjus,19

2024]. A gap persists between high-level intent (e.g., “make the vocals warmer”) and the low-level20

steps to realize it.21

Prior work points to a path forward: mature DAW scripting (Ableton’s Max for Live/Live API22

[Ableton, 2024], REAPER’s ReaScript/JSFX [Cockos Incorporated, 2024]), co-creative agents inside23

production loops (e.g., Juice [Bricard et al., 2024]), fully generative systems largely outside fine-24

grained editing (e.g., Suno [Suno, 2024]), advances in code generation [Chen et al., 2021], and25

standardized tool invocation via the Model Context Protocol (MCP) [Anthropic, 2024, Hou et al.,26

2025].27

We introduce DAWZY, an open-source assistant that maps natural-language requests to precise,28

context-aware, reversible ReaScript actions in REAPER. DAWZY queries live session state, emits29

auditable edits, and favors a minimal-GUI, voice-first workflow with plain-language explanations to30

support learning. It primarily interacts with REAPER through LLM code generation. Related efforts31

(e.g., Mozart AI [Mozart AI, 2025]) explore closed-source adjacent ideas; DAWZY emphasizes32

open-source availability and ReaScript-specific reliability, complementing rather than replacing33

existing tools.34

Primary Contributions35

1Resources: Code (anonymous) Demo (anonymous)
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• System design & open-source prototype. REAPER-targeted pipeline mapping natural language36

to safe, reversible ReaScript grounded in live state (Sec. 2).37

• MCP tool suite. Permissioned tools for state query, unit-consistent FX parameter adjustment, and38

AI beat generation; supports future cross-DAW portability (Sec. 2.2).39

• Minimal-GUI, voice-first interaction. Natural-language control with buttons for common40

tasks(“start,” “stop,” “record,” “undo”) to reduce GUI micromanagement (Sec. 2.1).41

• Explain-as-you-go pedagogy. Plain-language rationales accompany each edit to support learning42

and auditability.43

• ReaScript-focused model adaptation. Plan to fine-tune an open-source LLM for reliable REAPER44

code generation (Sec. 4).45

2 DAWZY Architecture46

DAWZY comprises three layers (Figure 1): User Interaction, Processing, and Execution, which47

capture natural-language intent, interpret it, and translate it into precise DAW operations.48

2.1 User Interaction Layer49

The User Interaction Layer is a minimal-GUI entry point for expressing intent via text, speech,50

or humming, mediated by an Electron.js app [OpenJS Foundation, 2024]. Given the complexity51

of traditional DAW interfaces, DAWZY prioritizes direct, natural-language control to reduce GUI52

micromanagement. (1) Text — Users type commands/questions in Electron; queries are forwarded as53

text. (2) Speech - Spoken commands are transcribed by Whisper [Radford et al., 2022] and follow54

the same downstream path (hands-free). (3) Humming - A “record hum” button captures sketches; a55

local BasicPitch pipeline [Spotify] converts audio to MIDI, which is auto-imported into REAPER as56

a new track.57

2.2 Processing Layer58

The Processing Layer turns user input into context-aware DAW operations. Off-the-shelf LLM59

approaches often hallucinate commands, mis-index tracks/parameters, or ignore live state. DAWZY60

constrains behavior via a reliable LLM, and context grounding.61

• Electron gateway. Routes all queries to the LLM and returns responses/confirmations; hummed62

audio is sent to the hum-to-MIDI pipeline.63

• LLM. We use OpenAI GPT-5 [OpenAI, 2025a,b] to interpret intent, call MCP tools, and emit Lua64

ReaScript. Open-source baselines (e.g., Qwen3-Coder-480B-A35B-Instruct [Qwen Team, Team,65

2025]) underperformed, frequently producing invalid indices when the full context (track/parameter66

mappings) was not considered; GPT-5 generated reliable edits.67

• Model Context Protocol (MCP). Exposes DAW capabilities as explicit, permissioned functions68

between the LLM and REAPER:69

– State query. Enumerates tracks, items, FX, and routing to ground edits in live session state and70

keep tool calls synchronized.71

– FX parameterization (fxparam). Converts human units (dB, ms) to ReaScript slider ranges72

(e.g., 0–1, 0–4) to prevent scaling errors. Code generation failed here because the LLM could73

not reliably convert between units.74

– Beat generation. Meta’s MusicGen-small (300M) model is run locally to create an audio75

waveform based on a text description [Meta AI, Copet et al., 2023].76

• Hum to MIDI. The open-source Spotify BasicPitch model is run locally to convert hums into77

MIDI data [Spotify, Bittner et al., 2022].78

2.3 Execution Layer79

The Execution Layer (Figure 1) performs edits in REAPER safely, reversibly, and transparently by80

grounding actions in live project state. (1) ReaScript actuation - GPT-5 generates Lua that ReaPy81
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Figure 1: DAWZY Architecture. User intent (text/speech/hum) flows through the Electron gateway
to the LLM and MCP tools, then executes as reversible ReaScripts in REAPER. Rounded rectangles
denote AI/MCP components; sharp rectangles denote DAW/runtime components; dashed arrows
indicate data queries; solid arrows indicate state-changing actions.

executes to modify the project; changes are reversible. (2) Utility scripts - Specialized scripts handle82

(i) FX parameter updates, (ii) project-state summaries, and (iii) audio/MIDI import as new tracks.83

3 Evaluation84

We evaluate DAWZY using both objective performance tasks and subjective user ratings.85

3.1 Objective Evaluation86

To test reliability, we designed four reproducible tasks: (1) Multi-instruction FX processing —87

"Double the first track’s volume, increase the decay, and set the attack to 10 ms," (2) GUI navigation88

— "Open the FX browser for the first track," (3) Workflow automation — "Duplicate the first track,89

pitch it up one octave, and blend it in at 20%," and (4) Educational interaction — "What does attack90

time do in the second track’s compressor?"91
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3.2 Model Comparison92

Building on the four tasks described in Sec. 3 (Objective Evaluation), we ran 3 trials per task for93

each model. Open-source baselines (QWEN-480B, GPT-OSS-120B, GPT-OSS-20B) achieved only94

25–50% success, often failing due to hallucinated or invalid ReaScript functions and mis-indexed95

parameters. GPT-5, by contrast, reached 83% success, benefiting from broader ReaScript coverage96

and stronger reasoning, which motivated our shift toward it for reliable integration.97

Task QWEN-480B GPT-OSS-120B GPT-OSS-20B GPT-5

FX (1) 2 2 0 2
GUI (2) 1 0 0 2
Chain (3) 0 0 0 3
Learn (4) 3 3 3 3
Success Rate 50% 42% 25% 83%

Table 1: Objective task success across models. Scores denote successful trials out of three per task;
“Success Rate” is over all four tasks.
3.3 Subjective Evaluation (MOS Test)98

We conducted a Mean Opinion Score (MOS) test with 21 participants, who rated DAWZY on a99

5-point Likert scale across five dimensions: Usability, Control, Learning, Collaboration, and100

Enjoyment. All dimensions scored above the neutral threshold of 3, with Enjoyment (M = 4.48) and101

Learning (M = 4.38) rated highest, followed by Collaboration (M = 4.29), Usability (M = 4.14),102

and Control (M = 3.81), reflecting a positive overall perception of the system.103
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Figure 2: Mean Opinion Score (MOS) results for DAWZY (N=21). The dashed red line indicates the
neutral rating (3).

4 Conclusion104

DAWZY demonstrates natural-language control of complex creative software can augment—rather105

than replace—human creativity. Pairing state extraction with context-aware code generation, it106

performs precise, reversible ReaScript edits inside REAPER while keeping users in the loop. Current107

constraints arise from REAPER-specific APIs and the need to adapt the state-extraction layer per108

DAW; the prototype emphasizes core operations over advanced plugin interactions and routing. As109

DAWs expand scripting and APIs [Ableton AG, 2025] and code generation improves [Alenezi and110

Akour, 2025, p. 2], we anticipate broader integration in professional workflows.111

A key contribution is treating AI not as a black box but as a transparent, editable component. Looking112

ahead, we will (i) conduct user studies; (ii) expand plugin/routing support and cross-DAW portability113

via abstraction layers; and (iii) train and fine-tune open-source models explicitly for reliable ReaScript114

synthesis, supported by a curated (intent, state, script) corpus, unit tests/undo-safety checks, and115

public benchmarks against closed models. We invite the community to try the demo, provide feedback,116

and collaborate on this open framework for natural-language creative tool control.117
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