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Abstract

Digital Audio Workstations (DAWSs) offer fine control, but mapping high-level
intent (e.g., “warm the vocals”) to low-level edits breaks creative flow. Existing
artificial intelligence (AI) music generators are typically one-shot, limiting oppor-
tunities for iterative development and human contribution. We present DAWZY, an
open-source assistant that turns natural-language (text/voice/hum) requests into
reversible actions in REAPER. DAWZY keeps the DAW as the creative hub with a
minimal GUI and voice-first interface. DAWZY uses LLM-based code generation
as a novel way to significantly reduce the time users spend familiarizing themselves
with large interfaces, replacing hundreds of buttons and drop downs with a chat
box. DAWZY also uses three Model Context Protocol tools for live state queries,
parameter adjustment, and Al beat generation. It maintains grounding by refreshing
state before mutation; and ensures safety and reversibility with atomic scripts and
undo. In evaluations, DAWZY performed reliably on common production tasks and
was rated positively by users across Usability, Control, Learning, Collaboration,
and Enjoyment. We show reliability on common production tasks; code and a short
demo are available. []

1 Introduction

Modern music production centers on Digital Audio Workstations (DAWSs) |Leider]| [2004], which
democratize pro-quality creation but burden users with option overload that disrupts flow [Kjus|
2024)). A gap persists between high-level intent (e.g., “make the vocals warmer”) and the low-level
steps to realize it.

Prior work points to a path forward: mature DAW scripting (Ableton’s Max for Live/Live API
[Ableton, [2024]], REAPER’s ReaScript/JSFX [Cockos Incorporated, 2024]), co-creative agents inside
production loops (e.g., Juice [Bricard et al., 2024]]), fully generative systems largely outside fine-
grained editing (e.g., Suno [Suno, [2024]]), advances in code generation [Chen et al., [2021f], and
standardized tool invocation via the Model Context Protocol (MCP) [Anthropic, 2024} Hou et al.
2025]].

We introduce DAWZY, an open-source assistant that maps natural-language requests to precise,
context-aware, reversible ReaScript actions in REAPER. DAWZY queries live session state, emits
auditable edits, and favors a minimal-GUI, voice-first workflow with plain-language explanations to
support learning. It primarily interacts with REAPER through LLM code generation. Related efforts
(e.g., Mozart Al [Mozart Al| 2025])) explore closed-source adjacent ideas; DAWZY emphasizes
open-source availability and ReaScript-specific reliability, complementing rather than replacing
existing tools.

Primary Contributions

"Resources: Code (anonymous) |Demo (anonymous)

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.


https://anonymous.4open.science/r/DAWZY-92BE/README.md
https://youtu.be/e6vbURyIQJE
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» System design & open-source prototype. REAPER-targeted pipeline mapping natural language
to safe, reversible ReaScript grounded in live state (Sec. [2).

* MCP tool suite. Permissioned tools for state query, unit-consistent FX parameter adjustment, and
Al beat generation; supports future cross-DAW portability (Sec. [2.2).

* Minimal-GUI, voice-first interaction. Natural-language control with buttons for common
tasks(“start,” “stop,” “record,” “undo”) to reduce GUI micromanagement (Sec.[2.1)).

* Explain-as-you-go pedagogy. Plain-language rationales accompany each edit to support learning
and auditability.

* ReaScript-focused model adaptation. Plan to fine-tune an open-source LLM for reliable REAPER
code generation (Sec. ).

2 DAWZY Architecture

DAWZY comprises three layers (Figure[I)): User Interaction, Processing, and Execution, which
capture natural-language intent, interpret it, and translate it into precise DAW operations.

2.1 User Interaction Layer

The User Interaction Layer is a minimal-GUI entry point for expressing intent via text, speech,
or humming, mediated by an Electron.js app [OpenJS Foundation| 2024]|. Given the complexity
of traditional DAW interfaces, DAWZY prioritizes direct, natural-language control to reduce GUI
micromanagement. (1) Text — Users type commands/questions in Electron; queries are forwarded as
text. (2) Speech - Spoken commands are transcribed by Whisper [Radford et al.,[2022] and follow
the same downstream path (hands-free). (3) Humming - A “record hum” button captures sketches; a
local BasicPitch pipeline [[Spotify|] converts audio to MIDI, which is auto-imported into REAPER as
a new track.

2.2 Processing Layer

The Processing Layer turns user input into context-aware DAW operations. Off-the-shelf LLM
approaches often hallucinate commands, mis-index tracks/parameters, or ignore live state. DAWZY
constrains behavior via a reliable LLM, and context grounding.

* Electron gateway. Routes all queries to the LLM and returns responses/confirmations; hummed
audio is sent to the hum-to-MIDI pipeline.

o LLM. We use OpenAl GPT-5 [OpenAll [2025alb] to interpret intent, call MCP tools, and emit Lua
ReaScript. Open-source baselines (e.g., Qwen3-Coder-480B-A35B-Instruct [Qwen Team, Team),
20235])) underperformed, frequently producing invalid indices when the full context (track/parameter
mappings) was not considered; GPT-5 generated reliable edits.

* Model Context Protocol (MCP). Exposes DAW capabilities as explicit, permissioned functions
between the LLM and REAPER:
— State query. Enumerates tracks, items, FX, and routing to ground edits in live session state and
keep tool calls synchronized.

— FX parameterization (fxparam). Converts human units (dB, ms) to ReaScript slider ranges
(e.g., 0—1, 0-4) to prevent scaling errors. Code generation failed here because the LLM could
not reliably convert between units.

— Beat generation. Meta’s MusicGen-small (300M) model is run locally to create an audio
waveform based on a text description [Meta Al |Copet et al.| [2023].

* Hum to MIDI. The open-source Spotify BasicPitch model is run locally to convert hums into
MIDI data [Spotify, Bittner et al., 2022].

2.3 Execution Layer

The Execution Layer (Figure[T) performs edits in REAPER safely, reversibly, and transparently by
grounding actions in live project state. (1) ReaScript actuation - GPT-5 generates Lua that ReaPy
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Figure 1: DAWZY Architecture. User intent (text/speech/hum) flows through the Electron gateway
to the LLM and MCP tools, then executes as reversible ReaScripts in REAPER. Rounded rectangles
denote AI/MCP components; sharp rectangles denote DAW/runtime components; dashed arrows
indicate data queries; solid arrows indicate state-changing actions.

executes to modify the project; changes are reversible. (2) Utility scripts - Specialized scripts handle
(i) FX parameter updates, (ii) project-state summaries, and (iii) audio/MIDI import as new tracks.

3 Evaluation

We evaluate DAWZY using both objective performance tasks and subjective user ratings.

3.1 Objective Evaluation

To test reliability, we designed four reproducible tasks: (1) Multi-instruction FX processing —
"Double the first track’s volume, increase the decay, and set the attack to 10 ms," (2) GUI navigation

— "Open the FX browser for the first track," (3) Workflow automation — "Duplicate the first track,

pitch it up one octave, and blend it in at 20%," and (4) Educational interaction — "What does attack
time do in the second track’s compressor?"
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3.2 Model Comparison

Building on the four tasks described in Sec. 3] (Objective Evaluation), we ran 3 trials per task for
each model. Open-source baselines (QWEN-480B, GPT-OSS-120B, GPT-OSS-20B) achieved only
25-50% success, often failing due to hallucinated or invalid ReaScript functions and mis-indexed
parameters. GPT-5, by contrast, reached 83% success, benefiting from broader ReaScript coverage
and stronger reasoning, which motivated our shift toward it for reliable integration.

Task QWEN-480B GPT-OSS-120B  GPT-OSS-20B  GPT-5
FX (1) 2 2 0 2
GUI(2) 1 0 0 2
Chain (3) 0 0 0 3
Learn (4) 3 3 3 3
Success Rate 50% 42% 25% 83%

Table 1: Objective task success across models. Scores denote successful trials out of three per task;
“Success Rate” is over all four tasks.

3.3 Subjective Evaluation (MOS Test)

We conducted a Mean Opinion Score (MOS) test with 27 participants, who rated DAWZY on a
5-point Likert scale across five dimensions: Usability, Control, Learning, Collaboration, and
Enjoyment. All dimensions scored above the neutral threshold of 3, with Enjoyment (M = 4.48) and
Learning (M = 4.38) rated highest, followed by Collaboration (M = 4.29), Usability (M = 4.14),
and Control (M = 3.81), reflecting a positive overall perception of the system.

DAWZY System Evaluation: Mean Opinion Scores

5

4.38 3:48

4.29

4.14

I
o
o
=

Neutral|(3)

w
T
]
]
|

Mean Opinion Score
N

Usability Control Learning Collaboration Enjoyment
Evaluation Criteria

Figure 2: Mean Opinion Score (MOS) results for DAWZY (N=21). The dashed red line indicates the
neutral rating (3).

4 Conclusion

DAWZY demonstrates natural-language control of complex creative software can augment—rather
than replace—human creativity. Pairing state extraction with context-aware code generation, it
performs precise, reversible ReaScript edits inside REAPER while keeping users in the loop. Current
constraints arise from REAPER-specific APIs and the need to adapt the state-extraction layer per
DAW; the prototype emphasizes core operations over advanced plugin interactions and routing. As
DAWSs expand scripting and APIs [Ableton AG,|[2025]] and code generation improves [Alenezi and
Akour} 2025| p. 2], we anticipate broader integration in professional workflows.

A key contribution is treating Al not as a black box but as a transparent, editable component. Looking
ahead, we will (i) conduct user studies; (ii) expand plugin/routing support and cross-DAW portability
via abstraction layers; and (iii) train and fine-tune open-source models explicitly for reliable ReaScript
synthesis, supported by a curated (intent, state, script) corpus, unit tests/undo-safety checks, and
public benchmarks against closed models. We invite the community to try the demo, provide feedback,
and collaborate on this open framework for natural-language creative tool control.
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