
DAWZY: A New Addition to AI powered "Human in
the Loop" Music Co-creation

Anonymous Author(s)
Affiliation
Address
email

Abstract

Digital Audio Workstations (DAWs) offer fine control, but mapping high-level1

intent (e.g., “warm the vocals”) to low-level edits breaks creative flow. Existing2

artificial intelligence (AI) music generators are typically one-shot, limiting oppor-3

tunities for iterative development and human contribution. We present DAWZY, an4

open-source assistant that turns natural-language (text/voice/hum) requests into5

reversible actions in REAPER. DAWZY keeps the DAW as the creative hub with a6

minimal GUI and voice-first interface. DAWZY uses LLM-based code generation7

as a novel way to significantly reduce the time users spend familiarizing themselves8

with large interfaces, replacing hundreds of buttons and drop downs with a chat9

box. DAWZY also uses three Model Context Protocol tools for live state queries,10

parameter adjustment, and AI beat generation. It maintains grounding by refreshing11

state before mutation; and ensures safety and reversibility with atomic scripts and12

undo. In evaluations, DAWZY performed reliably on common production tasks and13

was rated positively by users across Usability, Control, Learning, Collaboration,14

and Enjoyment. We show reliability on common production tasks; code and a short15

demo are available. 116

1 Introduction17

Modern music production centers on Digital Audio Workstations (DAWs) Leider [2004], which18

democratize pro-quality creation but burden users with option overload that disrupts flow [Kjus,19

2024]. A gap persists between high-level intent (e.g., “make the vocals warmer”) and the low-level20

steps to realize it.21

Prior work points to a path forward: mature DAW scripting (Ableton’s Max for Live/Live API22

[Ableton, 2024], REAPER’s ReaScript/JSFX [Cockos Incorporated, 2024]), co-creative agents inside23

production loops (e.g., Juice [Bricard et al., 2024]), fully generative systems largely outside fine-24

grained editing (e.g., Suno [Suno, 2024]), advances in code generation [Chen et al., 2021], and25

standardized tool invocation via the Model Context Protocol (MCP) [Anthropic, 2024, Hou et al.,26

2025].27

We introduce DAWZY, an open-source assistant that maps natural-language requests to precise,28

context-aware, reversible ReaScript actions in REAPER. DAWZY queries live session state, emits29

auditable edits, and favors a minimal-GUI, voice-first workflow with plain-language explanations to30

support learning. It primarily interacts with REAPER through LLM code generation. Related efforts31

(e.g., Mozart AI [Mozart AI, 2025]) explore closed-source adjacent ideas; DAWZY emphasizes32

open-source availability and ReaScript-specific reliability, complementing rather than replacing33

existing tools.34

Primary Contributions35

1Resources: Code (anonymous) Demo (anonymous)

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

https://anonymous.4open.science/r/DAWZY-92BE/README.md
https://youtu.be/e6vbURyIQJE


• System design & open-source prototype. REAPER-targeted pipeline mapping natural language36

to safe, reversible ReaScript grounded in live state (Sec. 2).37

• MCP tool suite. Permissioned tools for state query, unit-consistent FX parameter adjustment, and38

AI beat generation; supports future cross-DAW portability (Sec. 2.2).39

• Minimal-GUI, voice-first interaction. Natural-language control with buttons for common40

tasks(“start,” “stop,” “record,” “undo”) to reduce GUI micromanagement (Sec. 2.1).41

• Explain-as-you-go pedagogy. Plain-language rationales accompany each edit to support learning42

and auditability.43

• ReaScript-focused model adaptation. Plan to fine-tune an open-source LLM for reliable REAPER44

code generation (Sec. 4).45

2 DAWZY Architecture46

DAWZY comprises three layers (Figure 1): User Interaction, Processing, and Execution, which47

capture natural-language intent, interpret it, and translate it into precise DAW operations.48

2.1 User Interaction Layer49

The User Interaction Layer is a minimal-GUI entry point for expressing intent via text, speech,50

or humming, mediated by an Electron.js app [OpenJS Foundation, 2024]. Given the complexity51

of traditional DAW interfaces, DAWZY prioritizes direct, natural-language control to reduce GUI52

micromanagement. (1) Text — Users type commands/questions in Electron; queries are forwarded as53

text. (2) Speech - Spoken commands are transcribed by Whisper [Radford et al., 2022] and follow54

the same downstream path (hands-free). (3) Humming - A “record hum” button captures sketches; a55

local BasicPitch pipeline [Spotify] converts audio to MIDI, which is auto-imported into REAPER as56

a new track.57

2.2 Processing Layer58

The Processing Layer turns user input into context-aware DAW operations. Off-the-shelf LLM59

approaches often hallucinate commands, mis-index tracks/parameters, or ignore live state. DAWZY60

constrains behavior via a reliable LLM, and context grounding.61

• Electron gateway. Routes all queries to the LLM and returns responses/confirmations; hummed62

audio is sent to the hum-to-MIDI pipeline.63

• LLM. We use OpenAI GPT-5 [OpenAI, 2025a,b] to interpret intent, call MCP tools, and emit Lua64

ReaScript. Open-source baselines (e.g., Qwen3-Coder-480B-A35B-Instruct [Qwen Team, Team,65

2025]) underperformed, frequently producing invalid indices when the full context (track/parameter66

mappings) was not considered; GPT-5 generated reliable edits.67

• Model Context Protocol (MCP). Exposes DAW capabilities as explicit, permissioned functions68

between the LLM and REAPER:69

– State query. Enumerates tracks, items, FX, and routing to ground edits in live session state and70

keep tool calls synchronized.71

– FX parameterization (fxparam). Converts human units (dB, ms) to ReaScript slider ranges72

(e.g., 0–1, 0–4) to prevent scaling errors. Code generation failed here because the LLM could73

not reliably convert between units.74

– Beat generation. Meta’s MusicGen-small (300M) model is run locally to create an audio75

waveform based on a text description [Meta AI, Copet et al., 2023].76

• Hum to MIDI. The open-source Spotify BasicPitch model is run locally to convert hums into77

MIDI data [Spotify, Bittner et al., 2022].78

2.3 Execution Layer79

The Execution Layer (Figure 1) performs edits in REAPER safely, reversibly, and transparently by80

grounding actions in live project state. (1) ReaScript actuation - GPT-5 generates Lua that ReaPy81

2



User Interaction Layer

Processing Layer

Execution Layer

MIDI DATA

Hum-to-MIDI Model

Generated Audio (WAV)

Text-to-Music Model

Add Track Script

User's Query

Electron.js APP

Humming AudioDAW Command / Question (Speech)DAW Command / Question (Text)

User

Tool Call

LLM
(Determines user intent and calls MCP to execute tasks or generate content.)

Reaper DAW

Apply FX parameters

FX Param Script

Execution Result / State 

Adjust Parameter Values Request DAW State

Generate Music from Text Prompt

MCP

Text Response to User

Execute Dynamic Generated
ReaScript

Execution Result
/ State Data

Request DAW State

Get State Script

Hum-to-MIDISpeech-to-Text

Text Command / Query

Figure 1: DAWZY Architecture. User intent (text/speech/hum) flows through the Electron gateway
to the LLM and MCP tools, then executes as reversible ReaScripts in REAPER. Rounded rectangles
denote AI/MCP components; sharp rectangles denote DAW/runtime components; dashed arrows
indicate data queries; solid arrows indicate state-changing actions.

executes to modify the project; changes are reversible. (2) Utility scripts - Specialized scripts handle82

(i) FX parameter updates, (ii) project-state summaries, and (iii) audio/MIDI import as new tracks.83

3 Evaluation84

We evaluate DAWZY using both objective performance tasks and subjective user ratings.85

3.1 Objective Evaluation86

To test reliability, we designed four reproducible tasks: (1) Multi-instruction FX processing —87

"Double the first track’s volume, increase the decay, and set the attack to 10 ms," (2) GUI navigation88

— "Open the FX browser for the first track," (3) Workflow automation — "Duplicate the first track,89

pitch it up one octave, and blend it in at 20%," and (4) Educational interaction — "What does attack90

time do in the second track’s compressor?"91

3



3.2 Model Comparison92

Building on the four tasks described in Sec. 3 (Objective Evaluation), we ran 3 trials per task for93

each model. Open-source baselines (QWEN-480B, GPT-OSS-120B, GPT-OSS-20B) achieved only94

25–50% success, often failing due to hallucinated or invalid ReaScript functions and mis-indexed95

parameters. GPT-5, by contrast, reached 83% success, benefiting from broader ReaScript coverage96

and stronger reasoning, which motivated our shift toward it for reliable integration.97

Task QWEN-480B GPT-OSS-120B GPT-OSS-20B GPT-5

FX (1) 2 2 0 2
GUI (2) 1 0 0 2
Chain (3) 0 0 0 3
Learn (4) 3 3 3 3
Success Rate 50% 42% 25% 83%

Table 1: Objective task success across models. Scores denote successful trials out of three per task;
“Success Rate” is over all four tasks.
3.3 Subjective Evaluation (MOS Test)98

We conducted a Mean Opinion Score (MOS) test with 21 participants, who rated DAWZY on a99

5-point Likert scale across five dimensions: Usability, Control, Learning, Collaboration, and100

Enjoyment. All dimensions scored above the neutral threshold of 3, with Enjoyment (M = 4.48) and101

Learning (M = 4.38) rated highest, followed by Collaboration (M = 4.29), Usability (M = 4.14),102

and Control (M = 3.81), reflecting a positive overall perception of the system.103

Usability Control Learning Collaboration Enjoyment
Evaluation Criteria

0

1

2

3

4

5

M
ea

n 
O

pi
ni

on
 S

co
re

4.14

3.81

4.38 4.29
4.48

Neutral (3)

n = 21 responses

DAWZY System Evaluation: Mean Opinion Scores

Figure 2: Mean Opinion Score (MOS) results for DAWZY (N=21). The dashed red line indicates the
neutral rating (3).

4 Conclusion104

DAWZY demonstrates natural-language control of complex creative software can augment—rather105

than replace—human creativity. Pairing state extraction with context-aware code generation, it106

performs precise, reversible ReaScript edits inside REAPER while keeping users in the loop. Current107

constraints arise from REAPER-specific APIs and the need to adapt the state-extraction layer per108

DAW; the prototype emphasizes core operations over advanced plugin interactions and routing. As109

DAWs expand scripting and APIs [Ableton AG, 2025] and code generation improves [Alenezi and110

Akour, 2025, p. 2], we anticipate broader integration in professional workflows.111

A key contribution is treating AI not as a black box but as a transparent, editable component. Looking112

ahead, we will (i) conduct user studies; (ii) expand plugin/routing support and cross-DAW portability113

via abstraction layers; and (iii) train and fine-tune open-source models explicitly for reliable ReaScript114

synthesis, supported by a curated (intent, state, script) corpus, unit tests/undo-safety checks, and115

public benchmarks against closed models. We invite the community to try the demo, provide feedback,116

and collaborate on this open framework for natural-language creative tool control.117

4



References118

Colby N. Leider. Digital Audio Workstation. McGraw-Hill, Inc., USA, 1 edition, 2004. ISBN 0071422862.119

Yngvar Kjus. The platformization of music production: How digital audio workstations are turned into platforms120

of labor market relations. New Media & Society, 2024. doi: 10.1177/14614448241304660. First published121

online December 11, 2024.122

Ableton. Ableton reference manual, version 12 — max for live, 2024. URL https://www.ableton.com/en/123

manual/max-for-live/. Accessed 2025-08-18.124

Cockos Incorporated. Reascript documentation. https://www.reaper.fm/sdk/reascript/reascript.125

php, 2024. Accessed 18 Aug 2025.126

S. Bricard, F. D’Errico, M. Devis, A. Bitton, D. ADC, and E. Vincent. Juice: A framework for co-creative agents127

in digital audio workstations. arXiv:2402.19323, 2024. URL https://arxiv.org/abs/2402.19323.128

Suno. Suno. https://suno.com/, 2024. Accessed 18 Aug 2025.129

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, and et al. Evaluating large language models trained on130

code. arXiv preprint arXiv:2107.03374, 2021. URL https://arxiv.org/abs/2107.03374.131

Anthropic. Introducing the model context protocol. https://www.anthropic.com/news/132

model-context-protocol, 2024. Accessed 18 Aug 2025.133

Xinyi Hou, Yanjie Zhao, Shenao Wang, and Haoyu Wang. Model context protocol (mcp): Landscape, security134

threats, and future research directions, 2025. URL https://arxiv.org/abs/2503.23278.135

Mozart AI. Mozart ai — ai-powered music production daw, 2025. URL https://getmozart.ai/. Product136

site; Accessed 2025-08-18.137

OpenJS Foundation. Electron. https://www.electronjs.org/, 2024. Accessed 18 Aug 2025.138

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever. Robust139

speech recognition via large-scale weak supervision. arXiv preprint arXiv:2212.04356, 2022. doi: 10.48550/140

arXiv.2212.04356. URL https://arxiv.org/abs/2212.04356.141

Spotify. Basic pitch — about. https://basicpitch.spotify.com/about. Product page; accessed 18 Aug142

2025.143

OpenAI. Introducing gpt-5. https://openai.com/index/introducing-gpt-5/, 2025a. Accessed 18 Aug144

2025.145

OpenAI. Gpt-5 system card. https://openai.com/index/gpt-5-system-card/, 2025b. Accessed 18146

Aug 2025.147

Qwen Team. Qwen3 models — hugging face collection. https://huggingface.co/collections/Qwen/148

qwen3-67dd247413f0e2e4f653967f. Collection page; accessed 18 Aug 2025.149

Qwen Team. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.150

Meta AI. facebook/musicgen-small. https://huggingface.co/facebook/musicgen-small. Hugging151

Face model card; accessed 18 Aug 2025.152

Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi, and Alexandre Défossez.153

Simple and controllable music generation, 2023.154

Rachel Bittner, Min Kim, Juan José Bosch, Aren Jansen, Gordon Wichern, and Longshaop Hantrakul. A155

lightweight polyphonic pitch transcription model. arXiv preprint arXiv:2203.09893, 2022. URL https:156

//arxiv.org/abs/2203.09893.157

Ableton AG. Ableton live 12. https://www.ableton.com/, 2025. Accessed 18 Aug 2025.158

Mamdouh Alenezi and Mohammed Akour. Ai-driven innovations in software engineering: A review of current159

practices and future directions. Applied Sciences, 15(3):1344, 2025. doi: 10.3390/app15031344. URL160

https://www.mdpi.com/2076-3417/15/3/1344.161

5

https://www.ableton.com/en/manual/max-for-live/
https://www.ableton.com/en/manual/max-for-live/
https://www.ableton.com/en/manual/max-for-live/
https://www.reaper.fm/sdk/reascript/reascript.php
https://www.reaper.fm/sdk/reascript/reascript.php
https://www.reaper.fm/sdk/reascript/reascript.php
https://arxiv.org/abs/2402.19323
https://suno.com/
https://arxiv.org/abs/2107.03374
https://www.anthropic.com/news/model-context-protocol
https://www.anthropic.com/news/model-context-protocol
https://www.anthropic.com/news/model-context-protocol
https://arxiv.org/abs/2503.23278
https://getmozart.ai/
https://www.electronjs.org/
https://arxiv.org/abs/2212.04356
https://basicpitch.spotify.com/about
https://openai.com/index/introducing-gpt-5/
https://openai.com/index/gpt-5-system-card/
https://huggingface.co/collections/Qwen/qwen3-67dd247413f0e2e4f653967f
https://huggingface.co/collections/Qwen/qwen3-67dd247413f0e2e4f653967f
https://huggingface.co/collections/Qwen/qwen3-67dd247413f0e2e4f653967f
https://arxiv.org/abs/2505.09388
https://huggingface.co/facebook/musicgen-small
https://arxiv.org/abs/2203.09893
https://arxiv.org/abs/2203.09893
https://arxiv.org/abs/2203.09893
https://www.ableton.com/
https://www.mdpi.com/2076-3417/15/3/1344

	Introduction
	DAWZY Architecture
	User Interaction Layer
	Processing Layer
	Execution Layer

	Evaluation
	Objective Evaluation
	Model Comparison
	Subjective Evaluation (MOS Test)

	Conclusion

