© © N O O~ W N =

DAWZY: A New Addition to AI powered '"Human in
the Loop'' Music Co-creation

Anonymous Author(s)
Affiliation
Address

email

Abstract

Digital Audio Workstations (DAWSs) offer fine control, but mapping high-level
intent (e.g., “warm the vocals”) to low-level edits breaks creative flow. Existing
artificial intelligence (AI) music generators are typically one-shot, limiting oppor-
tunities for iterative development and human contribution. We present DAWZY, an
open-source assistant that turns natural-language (text/voice/hum) requests into
reversible actions in REAPER. DAWZY keeps the DAW as the creative hub with a
minimal GUI and voice-first interface. DAWZY uses LLM-based code generation
as a novel way to significantly reduce the time users spend familiarizing themselves
with large interfaces, replacing hundreds of buttons and drop downs with a chat
box. DAWZY also uses three Model Context Protocol tools for live state queries,
parameter adjustment, and Al beat generation. It maintains grounding by refreshing
state before mutation; and ensures safety and reversibility with atomic scripts and
undo. In evaluations, DAWZY performed reliably on common production tasks and
was rated positively by users across Usability, Control, Learning, Collaboration,
and Enjoyment. We show reliability on common production tasks; code and a short
demo are available. []

1 Introduction

Modern music production centers on Digital Audio Workstations (DAWSs) |Leider]| [2004], which
democratize pro-quality creation but burden users with option overload that disrupts flow [Kjus|
2024)). A gap persists between high-level intent (e.g., “make the vocals warmer”) and the low-level
steps to realize it.

Prior work points to a path forward: mature DAW scripting (Ableton’s Max for Live/Live API
[Ableton, [2024]], REAPER’s ReaScript/JSFX [Cockos Incorporated, 2024]), co-creative agents inside
production loops (e.g., Juice [Bricard et al., 2024]]), fully generative systems largely outside fine-
grained editing (e.g., Suno [Suno, [2024]]), advances in code generation [Chen et al., [2021f], and
standardized tool invocation via the Model Context Protocol (MCP) [Anthropic, 2024} Hou et al.
2025]].

We introduce DAWZY, an open-source assistant that maps natural-language requests to precise,
context-aware, reversible ReaScript actions in REAPER. DAWZY queries live session state, emits
auditable edits, and favors a minimal-GUI, voice-first workflow with plain-language explanations to
support learning. It primarily interacts with REAPER through LLM code generation. Related efforts
(e.g., Mozart Al [Mozart Al| 2025])) explore closed-source adjacent ideas; DAWZY emphasizes
open-source availability and ReaScript-specific reliability, complementing rather than replacing
existing tools.

Primary Contributions

"Resources: Code (anonymous) |Demo (anonymous)

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

https://anonymous.4open.science/r/DAWZY-92BE/README.md
https://youtu.be/e6vbURyIQJE

36
37

38
39

40
41

42
43

44
45

46

47
48

49

50
51
52
53
54
55
56
57

58

59
60
61

62
63

64
65
66
67

68
69
70
71
72
73
74
75
76
77
78

79

80
81

» System design & open-source prototype. REAPER-targeted pipeline mapping natural language
to safe, reversible ReaScript grounded in live state (Sec. [2).

* MCP tool suite. Permissioned tools for state query, unit-consistent FX parameter adjustment, and
Al beat generation; supports future cross-DAW portability (Sec. [2.2).

* Minimal-GUI, voice-first interaction. Natural-language control with buttons for common
tasks(“start,” “stop,” “record,” “undo”) to reduce GUI micromanagement (Sec.[2.1)).

* Explain-as-you-go pedagogy. Plain-language rationales accompany each edit to support learning
and auditability.

* ReaScript-focused model adaptation. Plan to fine-tune an open-source LLM for reliable REAPER
code generation (Sec.).

2 DAWZY Architecture

DAWZY comprises three layers (Figure[I)): User Interaction, Processing, and Execution, which
capture natural-language intent, interpret it, and translate it into precise DAW operations.

2.1 User Interaction Layer

The User Interaction Layer is a minimal-GUI entry point for expressing intent via text, speech,
or humming, mediated by an Electron.js app [OpenJS Foundation| 2024]|. Given the complexity
of traditional DAW interfaces, DAWZY prioritizes direct, natural-language control to reduce GUI
micromanagement. (1) Text — Users type commands/questions in Electron; queries are forwarded as
text. (2) Speech - Spoken commands are transcribed by Whisper [Radford et al.,[2022] and follow
the same downstream path (hands-free). (3) Humming - A “record hum” button captures sketches; a
local BasicPitch pipeline [[Spotify|] converts audio to MIDI, which is auto-imported into REAPER as
a new track.

2.2 Processing Layer

The Processing Layer turns user input into context-aware DAW operations. Off-the-shelf LLM
approaches often hallucinate commands, mis-index tracks/parameters, or ignore live state. DAWZY
constrains behavior via a reliable LLM, and context grounding.

* Electron gateway. Routes all queries to the LLM and returns responses/confirmations; hummed
audio is sent to the hum-to-MIDI pipeline.

o LLM. We use OpenAl GPT-5 [OpenAll [2025alb] to interpret intent, call MCP tools, and emit Lua
ReaScript. Open-source baselines (e.g., Qwen3-Coder-480B-A35B-Instruct [Qwen Team, Team),
20235])) underperformed, frequently producing invalid indices when the full context (track/parameter
mappings) was not considered; GPT-5 generated reliable edits.

* Model Context Protocol (MCP). Exposes DAW capabilities as explicit, permissioned functions
between the LLM and REAPER:
— State query. Enumerates tracks, items, FX, and routing to ground edits in live session state and
keep tool calls synchronized.

— FX parameterization (fxparam). Converts human units (dB, ms) to ReaScript slider ranges
(e.g., 0—1, 0-4) to prevent scaling errors. Code generation failed here because the LLM could
not reliably convert between units.

— Beat generation. Meta’s MusicGen-small (300M) model is run locally to create an audio
waveform based on a text description [Meta Al |Copet et al.| [2023].

* Hum to MIDI. The open-source Spotify BasicPitch model is run locally to convert hums into
MIDI data [Spotify, Bittner et al., 2022].

2.3 Execution Layer

The Execution Layer (Figure[T) performs edits in REAPER safely, reversibly, and transparently by
grounding actions in live project state. (1) ReaScript actuation - GPT-5 generates Lua that ReaPy

82
83

84

85

86

87
88
89
90
91

User

| T N a -
User Interaction Layer DAW Command / Question (Text) DAW Command / Question (Speech) Humming Audio
Speech-to-Text Hum-to-MIDI
Text Command / Query

Electron.js APP

N

. Text Response 'to User |
Processing Layer '

User's Query
\ 4
LLM
(Determines user intent and calls MCP to execute tasks or generate content.)
A
Execution Result / State Tool Call
‘ MCP

A

E Generate Music from Text Prompt

: Adjust Parameter Values Request DAW State A 4
Execution Result Text-to-Music Model | | Hum-to-MIDI Model
/ State Data
. Generated Audio (WAV) MIDI DATA
f v v
Execution Layer '
g FX Param Script Get State Script Add Track Script
Execute Dynamic Generated |
ReaScript 1 :
Apply FX parameters Request DAW State
: 4
Reaper DAW ’

Figure 1: DAWZY Architecture. User intent (text/speech/hum) flows through the Electron gateway
to the LLM and MCP tools, then executes as reversible ReaScripts in REAPER. Rounded rectangles
denote AI/MCP components; sharp rectangles denote DAW/runtime components; dashed arrows
indicate data queries; solid arrows indicate state-changing actions.

executes to modify the project; changes are reversible. (2) Utility scripts - Specialized scripts handle
(i) FX parameter updates, (ii) project-state summaries, and (iii) audio/MIDI import as new tracks.

3 Evaluation

We evaluate DAWZY using both objective performance tasks and subjective user ratings.

3.1 Objective Evaluation

To test reliability, we designed four reproducible tasks: (1) Multi-instruction FX processing —
"Double the first track’s volume, increase the decay, and set the attack to 10 ms," (2) GUI navigation

— "Open the FX browser for the first track," (3) Workflow automation — "Duplicate the first track,

pitch it up one octave, and blend it in at 20%," and (4) Educational interaction — "What does attack
time do in the second track’s compressor?"

92

93
94
95
96
97

98

99
100
101
102
103

104

105

107
108
109
110
111

112
113
114
115
116
117

3.2 Model Comparison

Building on the four tasks described in Sec. 3] (Objective Evaluation), we ran 3 trials per task for
each model. Open-source baselines (QWEN-480B, GPT-OSS-120B, GPT-OSS-20B) achieved only
25-50% success, often failing due to hallucinated or invalid ReaScript functions and mis-indexed
parameters. GPT-5, by contrast, reached 83% success, benefiting from broader ReaScript coverage
and stronger reasoning, which motivated our shift toward it for reliable integration.

Task QWEN-480B GPT-OSS-120B GPT-OSS-20B GPT-5
FX (1) 2 2 0 2
GUI(2) 1 0 0 2
Chain (3) 0 0 0 3
Learn (4) 3 3 3 3
Success Rate 50% 42% 25% 83%

Table 1: Objective task success across models. Scores denote successful trials out of three per task;
“Success Rate” is over all four tasks.

3.3 Subjective Evaluation (MOS Test)

We conducted a Mean Opinion Score (MOS) test with 27 participants, who rated DAWZY on a
5-point Likert scale across five dimensions: Usability, Control, Learning, Collaboration, and
Enjoyment. All dimensions scored above the neutral threshold of 3, with Enjoyment (M = 4.48) and
Learning (M = 4.38) rated highest, followed by Collaboration (M = 4.29), Usability (M = 4.14),
and Control (M = 3.81), reflecting a positive overall perception of the system.

DAWZY System Evaluation: Mean Opinion Scores

5

4.38 3:48

4.29

4.14

I
o
o
=

Neutral|(3)

w
T
]
]
|

Mean Opinion Score
N

Usability Control Learning Collaboration Enjoyment
Evaluation Criteria

Figure 2: Mean Opinion Score (MOS) results for DAWZY (N=21). The dashed red line indicates the
neutral rating (3).

4 Conclusion

DAWZY demonstrates natural-language control of complex creative software can augment—rather
than replace—human creativity. Pairing state extraction with context-aware code generation, it
performs precise, reversible ReaScript edits inside REAPER while keeping users in the loop. Current
constraints arise from REAPER-specific APIs and the need to adapt the state-extraction layer per
DAW; the prototype emphasizes core operations over advanced plugin interactions and routing. As
DAWSs expand scripting and APIs [Ableton AG,|[2025]] and code generation improves [Alenezi and
Akour} 2025| p. 2], we anticipate broader integration in professional workflows.

A key contribution is treating Al not as a black box but as a transparent, editable component. Looking
ahead, we will (i) conduct user studies; (ii) expand plugin/routing support and cross-DAW portability
via abstraction layers; and (iii) train and fine-tune open-source models explicitly for reliable ReaScript
synthesis, supported by a curated (intent, state, script) corpus, unit tests/undo-safety checks, and
public benchmarks against closed models. We invite the community to try the demo, provide feedback,
and collaborate on this open framework for natural-language creative tool control.

118

119

120
121
122

123
124

125
126

127
128

129

130
131

132
133

134
135

136
137

138

139
140
141

142
143

144
145

146
147

148
149

150

151
152

154

155
156
157

158

159
160
161

References
Colby N. Leider. Digital Audio Workstation. McGraw-Hill, Inc., USA, 1 edition, 2004. ISBN 0071422862.

Yngvar Kjus. The platformization of music production: How digital audio workstations are turned into platforms
of labor market relations. New Media & Society, 2024. doi: 10.1177/14614448241304660. First published
online December 11, 2024.

Ableton. Ableton reference manual, version 12 — max for live, 2024. URL https://www.ableton.com/en/
manual/max-for-1live/. Accessed 2025-08-18.

Cockos Incorporated. Reascript documentation. https://www.reaper.fm/sdk/reascript/reascript,
phpl 2024. Accessed 18 Aug 2025.

S. Bricard, F. D’Errico, M. Devis, A. Bitton, D. ADC, and E. Vincent. Juice: A framework for co-creative agents
in digital audio workstations. arXiv:2402.19323, 2024. URL https://arxiv.org/abs/2402.19323,

Suno. Suno. https://suno.com/, 2024. Accessed 18 Aug 2025.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, and et al. Evaluating large language models trained on
code. arXiv preprint arXiv:2107.03374,2021. URL https://arxiv.org/abs/2107.03374.

Anthropic. Introducing the model context protocol. https://www.anthropic.com/news/
model-context-protocol| 2024. Accessed 18 Aug 2025.

Xinyi Hou, Yanjie Zhao, Shenao Wang, and Haoyu Wang. Model context protocol (mcp): Landscape, security
threats, and future research directions, 2025. URL https://arxiv.org/abs/2503.23278,

Mozart Al. Mozart ai — ai-powered music production daw, 2025. URL https://getmozart.ai/. Product
site; Accessed 2025-08-18.

OpenJS Foundation. Electron. https://www.electronjs.org/, 2024. Accessed 18 Aug 2025.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever. Robust
speech recognition via large-scale weak supervision. arXiv preprint arXiv:2212.04356, 2022. doi: 10.48550/
arXiv.2212.04356. URL https://arxiv.org/abs/2212.04356,

Spotify. Basic pitch — about. https://basicpitch.spotify.com/about, Product page; accessed 18 Aug
2025.

OpenAl. Introducing gpt-5. https://openai.com/index/introducing-gpt-5/, 2025a. Accessed 18 Aug
2025.

OpenAl. Gpt-5 system card. https://openai.com/index/gpt-5-system-card/, 2025b. Accessed 18
Aug 2025.

Qwen Team. Qwen3 models — hugging face collection. https://huggingface.co/collections/Qwen/
qwen3-67dd247413£0e2e4£653967£. Collection page; accessed 18 Aug 2025.

Qwen Team. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388|

Meta Al. facebook/musicgen-small. https://huggingface.co/facebook/musicgen-small. Hugging
Face model card; accessed 18 Aug 2025.

Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi, and Alexandre Défossez.
Simple and controllable music generation, 2023.

Rachel Bittner, Min Kim, Juan José Bosch, Aren Jansen, Gordon Wichern, and Longshaop Hantrakul. A
lightweight polyphonic pitch transcription model. arXiv preprint arXiv:2203.09893, 2022. URL https:
//arxiv.org/abs/2203.09893|

Ableton AG. Ableton live 12. https://www.ableton.com/, 2025. Accessed 18 Aug 2025.

Mamdouh Alenezi and Mohammed Akour. Ai-driven innovations in software engineering: A review of current
practices and future directions. Applied Sciences, 15(3):1344, 2025. doi: 10.3390/app15031344. URL
https://www.mdpi.com/2076-3417/15/3/1344|

https://www.ableton.com/en/manual/max-for-live/
https://www.ableton.com/en/manual/max-for-live/
https://www.ableton.com/en/manual/max-for-live/
https://www.reaper.fm/sdk/reascript/reascript.php
https://www.reaper.fm/sdk/reascript/reascript.php
https://www.reaper.fm/sdk/reascript/reascript.php
https://arxiv.org/abs/2402.19323
https://suno.com/
https://arxiv.org/abs/2107.03374
https://www.anthropic.com/news/model-context-protocol
https://www.anthropic.com/news/model-context-protocol
https://www.anthropic.com/news/model-context-protocol
https://arxiv.org/abs/2503.23278
https://getmozart.ai/
https://www.electronjs.org/
https://arxiv.org/abs/2212.04356
https://basicpitch.spotify.com/about
https://openai.com/index/introducing-gpt-5/
https://openai.com/index/gpt-5-system-card/
https://huggingface.co/collections/Qwen/qwen3-67dd247413f0e2e4f653967f
https://huggingface.co/collections/Qwen/qwen3-67dd247413f0e2e4f653967f
https://huggingface.co/collections/Qwen/qwen3-67dd247413f0e2e4f653967f
https://arxiv.org/abs/2505.09388
https://huggingface.co/facebook/musicgen-small
https://arxiv.org/abs/2203.09893
https://arxiv.org/abs/2203.09893
https://arxiv.org/abs/2203.09893
https://www.ableton.com/
https://www.mdpi.com/2076-3417/15/3/1344

	Introduction
	DAWZY Architecture
	User Interaction Layer
	Processing Layer
	Execution Layer

	Evaluation
	Objective Evaluation
	Model Comparison
	Subjective Evaluation (MOS Test)

	Conclusion

